SMA的病程評估是依照其年齡以及可執行的功能來選擇合適的運動功能量表及電生理檢測1-3

許多運動功能評估量表已發展,證明可在多種條件下使用,包括3-5

  • 臨床研究中對脊髓性肌肉萎縮症自然病史的評估
  • 建立一基準線,以在臨床試驗中觀察試驗藥物對於運動功能的潛在好處


*
以下非完整的評估量表,僅供參考

影響各運動功能評估準確性的因素

若評估者有感患者變化,卻未反應在分數上,則可再次檢查下列可能的影響因素。此外,評估時的陪同者、病人的配合度、過程中是否給予標準正向回饋、評估時間是否符合生理作息以及是否有適當的休息,都可能對評估結果造成影響。

環境安排
環境中地板的軟硬度及室溫盡量維持一致
地板變軟或溫度太低,都可能降低動作表現。
衣著
穿著寬鬆且厚薄適中、亦可脫去尿布
貼身衣物可能影響肢體彎曲的表現、尿布可能降低坐姿穩定度。
年齡或經驗
年齡或動作經驗皆有可能影響評估表現
撕紙、拿筆等項目需要動作經驗,因此年幼患者的家長可在家先陪同練習。曾有病人在家撕紙被制止,連帶造成評估時不願配合而無法得分。
疫情
疫情使多數患者分數退步
疫情可能改變作息、活動量、生活習慣,進而影響動作表現,照顧者應盡量維持病患活動量,並鼓勵完成自己本來會做的事項。

現有運動功能評估工具的挑戰與展望

運動功能量表的局限性與互補
CHOP-INTEND
  • 適用於年齡較小或能力較弱的患者,若連續 2 次 CHOP-INTEND 評估均取得最高分,則可考慮改以HFMSE 評估
  • 若年幼病患已達成 CHOP-INTEND 最高分,但未達能以 HFMSE 評估的年齡 (例如在症狀前即開始治療的 18個月大病患),此時可使用其他評估發展的工具,例如 Bayley scale 進行評估。

HFMSE
  • 可因應病患狀況調整給予指示方式,如對非常年幼、無法理解操作手冊所列指示的病患,可以調整指令,例如使用遊戲方式或會發光的玩具。
  • 必要時可以更換 HFMSE 評估項目順序,但在臨床試驗中評估參與病患時則不可更動。更換順序時,應註記並維持未來評估順序的一致性,避免疲倦效應。
  • 為避免地板效應,在 HFMSE 分數低於10分時,應合併使用 HFMSE 和 CHOP-INTEND (或在較年長病患使用ATEND) 進行評估。

RULM
  • 用於評估病患的上肢功能,但患者分數可能受攣縮影響。
  • 影響評估結果常見的攣縮/肌肉骨骼異常包括斜頸、脊柱側凸、髖/膝/肘的屈曲攣縮、蹠屈肌攣縮。因此在評估RULM時,記錄攣縮情況非常重要。

SMA 疾病表現隨醫療積極介入後有極大改變,
評估 SMA 患者的方式也需與時俱進27



挑戰 1

運動功能較佳的SMA病童,部分評估工具容易遇到天花板效應

解決方式:

物理治療師分享,可併用其他非專為 SMA 設計的運動功能評估工具。



* 模擬個案



挑戰2

除運動功能指標外,如何評估病患在生活面向的變化?

解決方式:

從病患角度出發,可參考併用其他面向評估工具



生活品質
文獻曾使用的評估工具: FSS、MFI、HRQOL 等。
研究文獻曾利用生活品質量,評估 SMA 患者在接收治療後,可改善短期生活品質與運動表現27
上肢精細動作
文獻曾使用評估工具:MRC sum score 等。
研究文獻針對第3, 4型病患在治療後,觀察到握力與手部精細動作的進步,讓病患順利握筆或抓持物品28
吞嚥功能
文獻曾使用評估工具:PASA 問卷、p-FOIS 等。
在臨床試驗中顯示早期藥物治療可維持SMA病童吞嚥功能,減少咳嗽與噎嗆狀況29
呼吸功能
文獻曾使用評估工具:Apnea-Hypopnea Index、FVC 等。
研究文獻針對第3型病患在接受治療後出現 apnea 或 hypopnea 的次數有顯著降低,並可延緩 FVC 退化的速率30
步態與行走功能
文獻曾使用評估工具:OMNI Exertion Scale (主觀疲勞程度) 等。
步態與行走功能是評估病童改善幅度的適合指標,而執行、判讀、分析等方面,仍需更多研究文獻支持31

治療目標:維持現有功能、預防併發症出現32, 33

患者與照顧者對於治療的期待

照顧者最希望病患能做到的活動前3項為:上肢有力 (15.7%)、翻身 (9.0%)、行走 (7.1%),
因為與提高病患獨立性有關 34


不同運動功能程度的病患重視項目不同,例如 Type 3 病患與照護者較注重自我照顧能力;
Type 2 病患與照護者較注重上肢的能力,像是手機、電腦等科技產品使用能力。

出現停滯期怎麼辦?

出現分數進步瓶頸很正常,並全非治療失敗或是對治療無反應的徵象,
因為相對於SMA自然病史的退化,病患不再退化,已經是進步。


增加物理治療的強度可能在已達瓶頸時有幫助,或是是使用其他別的評估方式來觀察,
將有助醫療護人員了解疾病的進程及治療的效果。
例如: Patient-reported outcome measures (PROMs) : 由病患自行回報的評估方式,
可得到其他評估工具無法收集到的資訊,例如疲倦感減輕,
坐立時間增長,或是用餐時間縮短。
當遇到停滯期時,可多聆聽病患的反饋或視情況考慮搭配 PROMs 做為補充評估工具,
協助觀察患者的變化。

研究顯示 SMA 患者最期待的治療效果是能穩定疾病並維持生活品質,而如何運用各式工具,綜合評估治療對 SMA 病人生活各面向所帶來的實質進步,將是未來仍需持續探討的議題。




Abbreviations: SMA = Spinal Muscular Atrophy; CHOP-INTEND = Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders; HFMSE = Hammersmith Functional Motor Scale-Expanded; PDMS-II = Peabody Developmental Motor Scale, 2nd edition; GMFM = Gross Motor Function Measure; FSS = Fatigue Severity Score; MFI = Multidimensional Fatigue Inventory; HRQOL = Health-Related Quality of Life; MRC = Medical Research Council; PASA = Parent Assessment of Swallowing Ability; p-FOIS = Pediatric Functional Oral Intake Scale; FVC = Forced Vital Capacity.

REFERENCES 

1. Finkel RS, McDermott MP, Kaufmann P, et al. Observational study of spinal muscular atrophy type I and implications for clinical trials. Neurology. 2014;83(9):810-817. 2. Montes J, Gordon AM, Pandya S, De Vivo DC, Kaufmann P. Clinical outcome measures in spinal muscular atrophy. J Child Neurol. 2009;24(8):968-978. 3. Darras BT, Royden Jones H Jr, Ryan MM, De Vivo DC, eds. Neuromuscular Disorders of Infancy, Childhood, and Adolescence: A Clinician’s Approach. 2nd ed. London, UK: Elsevier; 2015. 4. Mercuri E, Finkel R, Montes J, et al. Patterns of disease progression in type 2 and 3 SMA: implications for clinical trials. Neuromuscul Disord. 2016;26(2):123-131. 5. Kolb SJ, Coffey CS, Yankey JW, et al; the NeuroNEXT Clinical Trial Network and on behalf of the NN101 SMA Biomarker Investigators. Baseline results of the NeuroNEXT spinal muscular atrophy infant biomarker study. Ann Clin Transl Neurol. 2016;3(2):132-145. 6. Data on file. Biogen Inc, Cambridge, MA.  7. Haataja L, Mercuri E, Regev R. Optimality score for the neurologic examination of the infant at 12 and 18 months of age. J Pediatr. 1999;135(2 pt 1):153-161. 8. Romeo DM, Ricci D, Brogna C, Mercuri E. Use of the Hammersmith Infant Neurological Examination in infants with cerebral palsy: a critical review of the literature. Dev Med Child Neurol. 2016;58(3):240-245. 9. De Sanctis R, Coratti G, Pasternak A, et al. Developmental milestones in type I spinal muscular atrophy. Neuromuscul Disord. 2016;26(11):754-759. 10. Glanzman AM, Mazzone E, Main M, et al. The Children’s Hospital of Philadelphia Infant Test of Neuromuscular Disorders (CHOP INTEND): test development and reliability. Neuromuscul Disord. 2010;20(3):155-161. 11. Glanzman AM, McDermott MP, Montes J. Validation of the Children’s Hospital of Philadelphia Infant Test of Neuromuscular Disorders (CHOP INTEND). Pediatr Phys Ther. 2011;23(4):322-326. 12. Spinal Muscular Atrophy Clinical Research Center. CHOP INTEND for SMA Type I score sheet. http://columbiasma.org/links.html. Updated March 14, 2013. Accessed April 26, 2016. 13. Finkel RS, Chiriboga CA, Vajsar J, et al. Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study. Lancet. 2016; 388(10063):3017-3026. 14. Glanzman AM, O’Hagen JM, McDermott MP, et al; the Pediatric Neuromuscular Clinical Research Network for Spinal Muscular Atrophy (PNCR), and the Muscle Study Group (MSG). Validation of the Expanded Hammersmith Functional Motor Scale in spinal muscular atrophy type II and III. J Child Neurol. 2011;26(12):1499-1507. 15. The Pediatric Neuromuscular Clinical Research Network for SMA. Expanded Hammersmith Functional Motor Scale for SMA (HFMSE). http://columbiasma.org/links.html. March 7, 2009. Accessed April 25, 2016. 16. Kaufmann P, McDermott MP, Darras BT, et al. Prospective cohort study of spinal muscular atrophy types 2 and 3. Neurology. 2012;79(18):1889-1897. 17. Sivo S, Mazzone E, De Sanctis, et al. Upper limb module in non-ambulant patients with spinal muscular atrophy: 12 month changes. Neuromuscul Disord. 2015;25(3):212-215. 18. Mazzone E, Bianco F, Martinelli D, et al. Assessing upper limb function in nonambulant SMA patients: development of a new module. Neuromuscul Disord. 2011;21(6):406-412. 19. Mazzone ES, Mayhew A, Montes J, et al. Revised Upper Limb Module for spinal muscular atrophy: development of a new module. Muscle Nerve. 2016. doi:10.1002/mus.25430. 20. Montes J, McDermott MP, Martens WB, et al. Six-minute walk test demonstrates motor fatigue in spinal muscular atrophy. Neurology. 2010;74(10):833-838. 21. Mazzone E, Bianco F, Main M, et al. Six minute walk test in type III spinal muscular atrophy: a 12 month longitudinal study. Neuromuscul Disord. 2013;23(8):624-628. 22. Swoboda KJ, Prior TW, Scott CB, et al. Natural history of denervation in SMA: relation to age, SMN2 copy number, and function. Ann Neurol. 2005;57(5):704-712. 23. Arnold WD, Sheth KA, Wier CG, et al. Electrophysiological motor unit number estimation (MUNE) measuring compound muscle action potential (CMAP) in mouse hindlimb muscles. J Vis Exp. 2015;103:1-8. 24. Bromberg MB, Swoboda KJ. Motor unit number estimation in infants and children with spinal muscular atrophy. Muscle Nerve. 2002;25(3):445-447. 25. Monti RJ, Roy RR, Edgerton VR. Role of motor unit structure in defining function. Muscle Nerve. 2001;1;24(7):848-866. 26. Finkel RS. Electrophysiological and motor function scale association in a pre-symptomatic infant with spinal muscular atrophy type I. Neuromuscul Disord. 2013;23(2):112-115.27. Kizina K., et al. Sci Rep. 2020 Jul 6; 10 (1):11069; 28. Wwl BD., et al. J Neurol. 2021 Mar;268 (3):923-935.; 29. Sansone V. et al. Neuromuscular Disorders.2021; 31 (supp):S135-S136.; 30. Kouri I. et al. J Clin Neuromuscul Dis. 2020.Dec; 22 (2):105-108.; 31. Kennedy RA. et al. J Foot Ankle Res. 2020 Mar 2; 13 (1):10.; 32. Rouault F, et al. Neuromuscul Disord. 2017; 27 (5):428-438.; 33. Michelson D, et al. Neurology. 2018; 91 (20):923-933. 34. Pierzchlewicz K, et al. Child Neurol Open. 2021 Jan-Dec; 8: 2329048X211008725.

SMA患者的基本活動能力與病情進展如何決定日常活動與生活方式?

了解更多